首页
(current)
大学
论文
新闻
招聘
FAQ
简体中文
中
En
登录
注册
#R.x. Zhong
Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment
钟任新 , 中山大学
Dynamic user equilibrium with side constraints for a traffic network: Theoretical development and numerical solution algorithm
钟任新 , 中山大学
Stochastic cell transmission model for traffic network with demand and supply uncertainties
钟任新 , 中山大学
Short-Term Traffic State Prediction Based on Temporal–Spatial Correlation
钟任新 , 中山大学
Optimal and robust strategies for freeway traffic management under demand and supply uncertainties: an overview and general theory
钟任新 , 中山大学
Modelling car-following behaviour with lateral separation and overtaking expectation
钟任新 , 中山大学
Linear complementarity system approach to macroscopic freeway traffic modelling: uniqueness and convexity
钟任新 , 中山大学
A cross-entropy method and probabilistic sensitivity analysis framework for calibrating microscopic traffic models
钟任新 , 中山大学
Modeling the impacts of mandatory and discretionary lane-changing maneuvers
钟任新 , 中山大学
Robust Perimeter Control for Two Urban Regions with Macroscopic Fundamental Diagrams: A Control-Lyapunov Function Approach
钟任新 , 中山大学
Forecasting journey time distribution with consideration to abnormal traffic conditions
钟任新 , 中山大学
Boundary conditions and behavior of the macroscopic fundamental diagram based network traffic dynamics: A control systems perspective
钟任新 , 中山大学
A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays
钟任新 , 中山大学
Modeling double time-scale travel time processes with application to assessing the resilience of transportation systems
钟任新 , 中山大学
Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach
钟任新 , 中山大学
A neuro-dynamic programming approach for perimeter control of two urban regions with macroscopic fundamental diagrams
钟任新 , 中山大学
The stochastic cell transmission model considering spatial and temporal correlations for traffic state prediction
钟任新 , 中山大学
Dynamic traffic equilibrium model for dynamic pricing and road capacity allocation scheme
钟任新 , 中山大学
Stochastic cell transmission model considering spatial and temporal correlations for traffic state prediction
钟任新 , 中山大学
A cell transmission model with lane changing and incorporation of stochastic demand and supply uncertainties for freeway traffic state estimation
钟任新 , 中山大学
Modeling the cell transmission model as a linear complementarity system
钟任新 , 中山大学
A cell transmission model with lane changing by lane-based fundamental diagram, assimilating lane speed observations and incorporation of uncertainty
钟任新 , 中山大学
Calibration of microscopic traffic model: cross entropy method and probability sensitivity analysis
钟任新 , 中山大学
Vehicle classification specified multilane dynamics study with consideration of lane changing motivation
钟任新 , 中山大学
Bus Arrival Time Prediction Based on Support Vector Regression with Bayesian Correction
钟任新 , 中山大学
Steady state analysis of day-to-day traffic disequilibrium dynamics under demand management and supply regulations
钟任新 , 中山大学
Steady state analysis of day-to-day traffic disequilibrium dynamics under demand management and supply regulations.
钟任新 , 中山大学
A probabilistic sensitivity analysis guided cross entropy method for efficient calibration of traffic models
钟任新 , 中山大学
Adaptive network traffic control with an integrated model-based and data-driven approach and a decentralised solution method
钟任新 , 中山大学
Stabilizing vehicular platoons mixed with regular human-piloted vehicles: an input-to-state string stability approach
钟任新 , 中山大学
Dynamic feedback control of day-to-day traffic disequilibrium process
钟任新 , 中山大学
Neuro-dynamic programming for optimal control of macroscopic fundamental diagram systems
钟任新 , 中山大学
Bus arrival time prediction and reliability analysis: An experimental comparison of functional data analysis and Bayesian support vector regression
钟任新 , 中山大学
Adaptive signal control for bus service reliability with connected vehicle technology via reinforcement learning
钟任新 , 中山大学