array(2) { ["lab"]=> string(3) "868" ["publication"]=> string(5) "10634" } 基于协同回归模型的矩阵分解推荐 - Computer Vision Research Group(计算机视觉实验室) | LabXing

Computer Vision Research Group(计算机视觉实验室)

简介 计算机视觉与图像处理

分享到

基于协同回归模型的矩阵分解推荐

2019
期刊 图学学报
作者 李振波 · 杨晋琪 · 岳峻
推荐系统是解决信息过载的有效途径。传统的推荐系统难以从海量数据中推选出符合用户个性化偏好的项目,推荐质量不高。为此,通过优化传统的协同过滤推荐算法,针对数据稀疏性等问题,提出协同回归模型的矩阵分解算法(CLMF)。通过机器学习算法发掘内容信息的深层次特征,提升了原始数据的信息量;并构建辅助特征矩阵,通过融合特征矩阵,CLMF最大化了特征标签的作用,并结合数据标签,语义信息和评分矩阵得到推荐算法框架。在真实数据集上实验结果显示,新型推荐算法可有效解决特征值缺失问题,改善了数据稀疏性,提升了算法扩展性,并显著增强覆盖性。