array(2) { ["lab"]=> string(3) "868" ["publication"]=> string(5) "10633" } 基于混合特征的互联网茄子图像检索方法与系统 - Computer Vision Research Group(计算机视觉实验室) | LabXing

Computer Vision Research Group(计算机视觉实验室)

简介 计算机视觉与图像处理

分享到

基于混合特征的互联网茄子图像检索方法与系统

2017
期刊 农业工程学报
作者 朱玲 · 李振波 · 杨照璐 ·
互联网图像数据的爆炸式增长使得有效检索变得越来越重要,不同于文字的检索,有效的图像检索仍然是一个开放的问题。该文提出了基于混合特征的互联网茄子类图像的检索方法,并开发了图像检索系统。该文采用Hu不变矩(hu invariant distance)作为几何不变特征,采用颜色矩方法,通过计算HSV空间的三阶矩来描述颜色特征,采用分水岭算法(watershed algorithm)提取茄子的轮廓特征,通过长宽比特征区分长茄和圆茄,最后综合几何不变特征、颜色、轮廓特征进行茄子对象的描述,分别给3种特征赋不同的权重,形成检索系统。试验验证,该文方法和系统在测试数据集上查全率为87.6%,查准率为87.6%,相比于只采用Hu不变矩方法(其查全率为31.75%,查准率为31.75%)在Hu不变矩加颜色特征方法(查全率为52.8%,查准率为52.8%),有了一定的提升,验证了方法的有效性。