array(2) { ["lab"]=> string(3) "496" ["publication"]=> string(5) "11542" } Prediction of intrinsic topological superconductivity in Mn-doped GeTe monolayer from first-principles - 电子结构计算 | LabXing

Prediction of intrinsic topological superconductivity in Mn-doped GeTe monolayer from first-principles

2021
期刊 npj Computational Materials
下载全文
AbstractThe recent discovery of topological superconductors (TSCs) has sparked enormous interest. The realization of TSC requires a delicate tuning of multiple microscopic parameters, which remains a great challenge. Here, we develop a first-principles approach to quantify realistic conditions of TSC by solving self-consistently Bogoliubov-de Gennes equation based on a Wannier function construction of band structure, in presence of Rashba spin-orbit coupling, Zeeman splitting and electron-phonon coupling. We further demonstrate the power of this method by predicting the Mn-doped GeTe (Ge1-xMnxTe) monolayer—a well-known dilute magnetic semiconductor showing superconductivity under hole doping—to be a Class D TSC with Chern number of −1 and chiral Majorana edge modes. By constructing a first-principles phase diagram in the parameter space of temperature and Mn concentration, we propose the TSC phase can be induced at a lower-limit transition temperature of ~40 mK and the Mn concentration of x~0.015%. Our approach can be generally applied to TSCs with a phonon-mediated pairing, providing useful guidance for future experiments.