
Granular Matter 6, 67–69 c© Springer-Verlag 2004
DOI 10.1007/s10035-004-0158-x

A note on the velocity of granular flow down
a bumpy inclined plane
Zhen-Ting Wang

Abstract The velocity distribution of granular flow down
a bumpy inclined plane is theoretically studied. The char-
acteristic length scale of local transient cluster plays an
important role in determining the flow rheology. After dis-
cussing the factors influencing the cluster size, we repro-
duce all observed velocity distributions successfully.
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Although it seems simple, the granular flow down an in-
clined plane is not fully understood [1–7]. For example,
the observed velocity profiles are different dramatically.
Some experimental results [8] are in agreement with the
pioneering work of Bagnold [9], in which the velocity pro-
file is a concave function of the distance from the bot-
tom plane. However, convex and linear velocity profiles are
also reported [3,10–14]. The very recent experiments and
numerical simulations have shown that all of these velocity
profiles could exist [7,15,16]. Despite numerous theoretical
works have been devoted to describe the flow properties
and a significant progress has been achieved [9,12,17–24],
a model which can predict all observed velocity distribu-
tions is lacking.

We choose axes such that the flow direction is x, the
direction perpendicular to the bumpy plane inclined at
an angle θ to the horizontal is y. The free surface and
the bumpy plane are y = h and y = 0, respectively(see
Fig.1). For a steady flow associated with random motions
of grains, the time-average velocity or the mean velocity
and the shear stress take the following form
ū = ū(y), v̄ = 0 (1)

τ = −ρu′v′ (2)
where u′ and v′ are velocity fluctuation components, ρ is
the density of the granular material.

Received: 11 November 2003

Zhen-Ting Wang
Department of Mechanics,
Lanzhou University,
Lanzhou, 730000, P.R. China
e-mail: wangzht02@st.lzu.edu.cn

This research was supported by the National Key Basic
Research and Development Foundation of the Ministry of
Science and Technology of China No. G2000048702.

Fig. 1. Schematic diagram of granular flow down a bumpy
inclined plane

The fluctuation superimposed on the principal motion
is complex in details [3, 6, 11, 25]. While the main vari-
able of interest is the mean velocity. So we have to make
some theoretical assumptions for the relation between the
fluctuational velocity and the mean velocity. In contrast to
the molecules of an ordinary fluid, the collisions between
the grains of a granular material are inelastic and lead
to the dissipation of energy. This effect tends to aggregate
grains together and form clusters [26]. These spatial struc-
tures are well known in granular gasses [27–29]. Indeed,
they have also been observed in dense granular flows [6,
30]. Many previous studies reveal that the micro-struc-
tures in the flowing layer play an important role in deter-
mining the flow rheology. For example, Mills et al assumed
the strong contact networks and the weak contact networks
coexist in a transient way [18]; Etraş and Halsey proposed
the formation of granular eddies, large scale structures of
grains moving coherently with one another [21]. In fact,
the clusters are neither chainlike nor the whole packing,
but rather fractional [6]. They can unite, split, emerge,
and disappear.

It is convenient to assume that the flowing layer is
composed of transient clusters. The velocity fluctuations
originate from the grain transportation between the lo-
cal transient cluster and its neighbors. We expect that
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two velocity fluctuation components have the same order.
Consider a cluster as shown in Fig.1, when it rolls, the
boundary grains are more easier to leave this cluster due
to the centrifugal effect and the impacts of surrounding
grains. The maximum displacement, a grain belonging to
this cluster can arrive in the y direction, is the distance
between a and b. The difference of the mean velocity be-
tween a and b can be regarded as the velocity fluctuation
u′ at a. Neglecting all high-order terms in a Taylor series,
we obtain

|u′|a = |ūb − ūa| ≈ (y2 − y1)|dū

dy
|a = l|dū

dy
|a (3)

where l is a unknown length scale.
Note that it is positive within the whole layer, the

shear stress can be written as

τ = ρl2(
dū

dy
)2 (4)

where all related constants have been included with l.
Comparing Eq. (4) with Prandtl’s mixing-length

hypothesis [31], we find that l is analogous with the mix-
ing-length. It can be regarded as the granular mixing-
length. Different from Prandtl’s mixing-length, the gran-
ular mixing-length is a measure of characteristic length
scale of the local transient cluster. It should be pointed
out that although using Bagnold model directly, a like
ideal has appeared in the works of Khakhar et al [32] in
which the granular mixing-length is interpreted as a mea-
sure of inter-grain spacing. Applying dimensional analysis,
Etraş and Halsey [21] defined an effective viscosity length
scale and also gave a similar expression of Eq. (4).

The momentum balance equation and boundary con-
ditions are as follows

ρg sin θ +
dτ

dy
= 0 (5)

τ |y=h = 0, ū|y=0 = 0 (6)

To solve Eq. (5), the relation between the granu-
lar mixing-length, l, and the spatial coordinate, y, and
other important parameters must be founded. Now, let’s
discuss the factors influencing the cluster size in this sys-
tem. Pouliquen [2] has shown experimentally that the crit-
ical thickness, hstop(θ), remaining when the flow stops, is a
characteristic length scale. It is conceivable that all grains
within the whole depth form a large cluster when the flow
stops. So hstop(θ) reflects the maximum size a cluster can
arrive. It contains the effects of the inclination, θ, and
the bumpy plane. Of course, the grain diameter, d, is an-
other important parameter. For different non-dimensional
depths, λ = h

d , the influences of these parameters are dif-
ferent.

(a) For thick flowing layer, the cluster size is much
larger than d. There is a typical size [6], which is equal to
hstop(θ) in the model of Etraş and Halsey [21]. We assume
that the granular mixing-length is proportional to hstop(θ)

l = A1hstop(θ) (7)

In this case, we get Bagnold profile

ū =
2h

√
gh sin θ

3A1hstop(θ)
[1 − (1 − y

h
)

3
2 ] (8)

Comparing with Pouliquen scaling relation [2]

U√
gh

= β
h

hstop(θ)
(9)

where U is the depth average velocity, we find that

A1 =
2
5β

√
sin θ (10)

where β = 0.136 [2]. Silbert et al [7] obtained β = 0.147.
(b) For medium flowing layer, the effect of grain size

can’t be neglected. The numerical simulations of driven
granular gases with gravity have shown that the cluster
size increases with the grain size and the distance from
the free surface [27]. In the study of the granular flow in
a rotating cylinder, Khakhar et al [32] made the following
assumption

l = C1
√

d(h − y) (11)

We further assume that the maximum granular mix-
ing-length is related to hstop(θ) through

lmax = A2hstop(θ) (12)

Using the same method as in (a), we find a linear veloc-
ity profile

ū =
h
√

gh sin θ

A2hstop(θ)
y

h
(13)

where

A2 =
1
2β

√
sin θ (14)

(c) For thin flowing layer, the effect of the bumpy plane
is very strong. The cluster size must increase more rapidly
than that of case (b), when approaching the bumpy plane.
This means that the power of (h − y) in the expression of
l is greater than 1

2 . Since l has a length dimension, a suit-
able selection is

l = C2(h − y) (15)

The restriction of l still is

lmax = A3hstop(θ) (16)

Thus, we obtain a convex velocity profile(in other
words, the velocity gradient will increase as one ap-
proaches the surface)

ū =
2h

√
gh sin θ

A3hstop(θ)
[1 − (1 − y

h
)

1
2 ] (17)

where

A3 =
2
3β

√
sin θ (18)

We need know two critical points of λ, at which the
transition of the shape of velocity profile occurs, to pre-
dict the actual velocity profiles. Sibert et al [7,15] observed
that Bagnold profile is true only for λ � λc = 20. Unfor-
tunately, we can not determine the other critical point
clearly. Sibert et al [7] have shown that the velocity pro-
file is approximately linear when 5� λ � 15. However, the
convex velocity profiles have also been investigated at λ ≈

5, 8.1, 11, 14, respectively [11,13,16]. These results indicate
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that the flow dynamic is more sensitive to boundary con-
ditions when λ < λc. In particular, the variations in the
roughness of the bottom plate can lead to very complex
flow behavior [33]. Eq. (13) can reproduce the observed
profile of Savage et al [10]. The predicts of Eq. (17) rather
than Eq. (13) are in good agreement with the experiment
data of Ancey [16], in which the influence of bumpy plane
is stronger.

In summary, the velocity of granular flow down a
bumpy inclined plane is mainly determined by the local
cluster size or the granular mixing-length. The detailed
expressions of the granular mixing-length are discussed
in different conditions. Although very crude, the present
work reproduces all observed velocity profiles successfully.
It seems that the spatial correlations of the velocity field
play an important role in dense granular flows.
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