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Synopsis A deep learning method based on the auto-encoder framework for model reconstruction 

from small angle scattering data 

Abstract We present an algorithm based on a deep learning method for model reconstruction from 
small angle X-ray scattering (SAXS) data. An auto-encoder for protein 3D models was trained to 
compress 3D shape information into vectors of a 200-dimensional latent space, and the vectors are 
optimized using genetic algorithms to build 3D models that are consistent with the scattering data. 
The algorithm was implemented using Python with the TensorFlow framework and tested with 
experimental data, demonstrating capacity and robustness of accurate model reconstruction even 

without using prior model size information.  

Keywords: Small angle scattering, deep learning, auto-encoder, model reconstruction, genetic 
algorithm  

1. Introduction  

Small angle X-ray scattering (SAXS) from protein molecules in solution is a powerful 

technique, providing information on molecular structures and dynamics (Putnam et al., 2007; 

Grant et al., 2011; Svergun & Koch, 2003). Because the solution scattering method does not 

require special treatment for protein molecules, such as crystallization in diffraction 

measurement or isotope labelling in nuclear magnetic resonance, SAXS experiments can be 

performed in high-throughput manners (Hura et al., 2009). Another major advantage of 

SAXS experiments is the ability to probe the structure and dynamics in solution, especially 

when combined with pumping methods to promote conformational changes (Neutze & 

Moffat, 2012; Kim et al., 2012). Time-resolved studies will reveal important information on 

molecular mechanism for protein functions.  
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Despite the success in extracting structural information from SAXS profiles, reconstructing 

high-quality 3D models remains challenging. Several approaches have been proposed and 

implemented to build 3D density maps from SAXS data, including shape envelope 

approximation using spherical harmonics functions, polymer chain folding, dummy atom 

assembly, iterative phasing, and database searching methods. The spherical harmonics 

function approximation method is fast but limited by resolution (Stuhrmann, 1970; Svergun 

& Stuhrmann, 1991; Svergun et al., 1996). In the Gasbor program, polymers composed of 

connected beads were used to represent protein molecules, and packing of these polymers 

was optimized to build 3D models (Svergun et al., 2001). Dummy atoms arranged in a 3D 

lattice were also used for model reconstruction, as implemented in DAMMIN/DAMMIF 

(Svergun, 1999; Franke & Svergun, 2009). An iterative phase retrieval method was expanded 

to analyse SAXS data and demonstrate its potentials (Grant, 2018). A database of shapes 

abstracted from actual protein complexes and efficiently represented using 3D Zernike 

polynomials was used to quickly retrieve 3D models that match experimental SAXS profiles, 

as implemented in sastbx.shapeup (Liu, Hexemer et al., 2012). A real space representation of 

a 3D model requires many parameters, such as the position of each bead, which can be 

described using its coordinates (then 3N parameters are required for a model with N beads). 

However, the number of parameters required is much greater than the number of free 

parameters encoded in 1D SAXS profiles. Therefore, prior knowledge must be applied to 

provide additional constraints for converged reconstructions. For example, the molecular size 

and the connectivity of the beads are very critical for DAMMIN/DAMMIF. In the case of 

sastbx.shapeup, the molecular size is de-coupled from the abstracted shapes (Liu, Morris et 

al., 2012), allowing an optimization of the size as a separate parameter. However, the 

diversity of models is limited by the database. Model reconstruction will be advanced if the 

following criteria are met: (1) diverse shapes of 3D models can be efficiently represented to 

cover a broader range than those in structure databases; and (2) SAXS profiles can be 

computed for each model that can be scaled to arbitrary sizes. We provide a solution to 

achieve this using an auto-encoder method combined with 3D Zernike representations 

(Canterakis, 1999; Liu, Morris et al., 2012).  

Inspired by deep learning methods, real space 3D models were encoded using an auto-

encoder neural network to a compressed representation of 200 latent parameters. The protein 

complexes in the PISA database (Krissinel & Henrick, 2007) were used to generate the 

training datasets for the auto-encoder. Each complex structure was scaled to fit within a unit 

sphere then voxelized to a 3D grid of 31x31x31. Because SAXS data often provide low-

resolution information that warrants a uniform density approximation for 3D models, we 
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binarized the voxelized objects before auto-encoder training (due to this uniform density 

approximation, the SAXS data comparison were limited up to q=0.2 Å-1). The testing results 

show that the shapes represented using 313 voxels with binary numbers can be encoded using 

a vector of 200 dimensions. The reduction of parameter space allows applying optimization 

algorithms to improve the model-data fitting. SAXS profiles for 3D voxelized objects were 

computed using the Zernike expansion method, taking advantage of fast evaluation of 

theoretical profiles at an arbitrary model radius. If desired, this radius will be coded using an 

additional parameter and subject to the optimization along with the other 200 parameters. The 

testing results using experimental data from the SASBDB (Valentini et al., 2015) and 

BIOISIS (Rambo & Tainer, 2011) show that the proposed method can successfully generate 

3D models based on SAXS data. The algorithm is implemented to the software, 

decodeSAXS, whose source code and an associated webserver are available at 

http://liulab.csrc.ac.cn/decodeSAXS. 

2. Methods 

2.1. Training and Testing Datasets 

The model dataset is compiled from the PISA structure database, including 60,000 randomly 

selected models. Each model was first scaled and shifted to fit in a sphere centred at the 

coordinate origin with a radius of 50 Å. Then, the atomic positions were mapped to a grid of 

31x31x31 in the process of scaling and voxelization. As a result, each model was converted 

to a voxel object described using a 3D matrix with binary values (see Figure 1a). The 

31x31x31 binary matrix was padded with zeros to a matrix of 32x32x32 before neural 

network training. 

2.2. Auto-encoder Neural network architecture  

The architecture of the auto-encoder is designed based on the VGG network (Simonyan & 

Zisserman, 2014). The encoding part of the auto-encoder is composed of 7 convolution layers 

and 2 pooling layers followed by a dense (fully connected) layer as indicated in Figure 1b. 

Network training was performed in two stages. During the first stage, the dense layer contains 

3,000 variables, and this number is reduced to 200 during the second stage. With this design, 

the final output is a 3,000-dimensional vector after the first training stage. Among these 3,000 

parameters, a significant portion (approximately 90%) of parameters is found to be zeros 

persistently, indicating that the parameter space for encoding can be reduced. With this 

observation, the fully connected layer was optimized again with a reduced dense layer of 200 

parameters. During the second stage of training, the parameters for convolutional and pooling 
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layers were inherited from the first stage and remained unchanged, except that the parameters 

for the fully connected dense layer were subjected to optimization. This two-stage training 

was adapted to ensure fast convergence of the training (we found that if the dense layer was 

set to a 200-dimension vector during the first stage of training, the loss function does not 

converge).  

The decoding part is relatively simple. The 200-dimension vector is converted to a 4D tensor 

of size 8x8x8x32, then followed by two deconvolution layers, and finished with a 

convolution layer to obtain a 32x32x32 matrix, from which a submatrix of 31x31x31 was 

obtained. A preset threshold of 0.1 was used to convert the matrix to binary values. 

The 60,000 models in the training dataset were fed to this auto-encoder with the loss function 

measured with cross entropy between the input models in binary values and the encode-

decoded (binary) maps (see supplementary materials for details). 

2.3. Model reconstruction from SAXS profiles 

The overall workflow for model reconstruction using the auto-encoder method is as follows. 

First, a number of latent parameter sets (genes) are populated to get the genetic algorithm 

started. During each iteration, the genes are first decoded to 3D voxel objects using the auto-

encoder network trained using the molecular shapes abstracted from the PISA database. The 

SAXS profiles are then computed using the Zernike method implemented in the SASTBX 

(elaborated below). Chi-scores between model profiles and target SAXS profiles are used to 

guide the genetic algorithm to evolve the genes until the chi-score is below a certain 

threshold or a pre-set number of iterations is reached. The final models are saved in density 

maps (CCP4 format) or bead models (PDB format). 

For a voxel object, use of the 3D Zernike representation has the advantage of de-coupling the 

model shape and size information; thus, the SAXS profiles can be quickly evaluated if the 

model size is updated while the shapes are not changed. A detailed derivation was elaborated 

elsewhere (Liu, Morris et al., 2012; Liu, Hexemer et al., 2012), and a brief summary is 

provided for clarity. A 3D object  after scaling to fit within a unit sphere can be 

expanded to the coefficients of 3D Zernike functions, which are a set of orthonormal 

polynomials with orders (n, l, m) (Canterakis, 1999; Novotni & Klein, 2003). The expansion 

coefficient or the so-called Zernike moment  is calculated with equation (1): 

   (1) 

ρ(r)

Cnlm

Cnlm = ρ(r)
|r|<1
∫ Znlm(r)dr
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Subsequently, the 3D density distribution function  can be approximated using { } up to a 

maximum expansion order . It has been shown (see (Liu, Morris et al., 2012)) that the SAXS 

intensity can be explicitly expressed as: 

   (2) 

where  describes the contribution from corresponding 

Zernike polynomial to SAXS profile with the Bessel functions of the first kind jn(x). In 

addition, the shape information is encoded in Hnn’, which is expressed using Zernike 

moments as follows: 

   (3) 

with . One can see that the radius of the object rmax is decoupled from the shape 
descriptors {Hnn’}. This allows us to optimize the radius as the 201st parameter (the other 200 
parameters encode the 3D shape).  
 
The genetic algorithm was used to optimize the parameters (200 parameters for given radius 

information or 201 parameters if the radius is a free parameter to be optimized) (Goldberg, 

1989). The target function to be minimized is the standard chi-score: 

   (4) 

The distribution of latent parameter values obtained during the auto-encoder training 

procedure was used to initialize the first bunch of model parameters, so that the genes (each 

with 200 or 201 values) for the first generation of the genetic algorithm were populated to 

start the optimization. In each generation, we retain 300 genes that are generated via 

simulated evolution procedures. The gene evolution was implemented using three operators: 

selection, crossing, and mutation. The selection operator decides which genes are inherited 

from the previous generation by selecting the more fitted gene of two randomly selected 

genes from the previous generation. The crossing operator is included to exchange gene 

segments obtained from the previous generation. The mutation operator changes parameter 

values at random positions by replacing the current value to a random value with a 

probability distribution that follows prior knowledge of parameter distributions at that gene 

position.  

ρ(r) Cnlm

nmax

I(q) = Bn(qrmax )Bn ' (
n '
∑

n
∑ qrmax )Hnn '

Bn(qrmax ) =
jn(qrmax )+ jn+2(qrmax )

2n+ 3

Hnn ' = knlkn 'l CnlmCn 'lm
*

m
∑

l
∑

knl = (−1)
n−l
2

χ 2 = 1
N

[
Iobs(qi )− cImodel (qi )

σ ii=1,N
∑ ]2
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The model comparison was measured using Pearson correlation coefficients (cc) after model 

alignments, which was performed using the fast rotation algorithm sastbx.superpose 

implemented in SASTBX (Liu, Hexemer et al., 2012). The figures are prepared using 

Chimera (Pettersen et al., 2004) or Pymol (Schrödinger, 2015). 

3. Results 

In this section, we first demonstrate that the auto-encoder works nicely in representing the 

shape information in the compressed format. Then, we show the performance of model 

reconstruction with or without model size information using the SAXS data as the target for 

optimization. The reconstructions for experimental SAXS datasets yield high-quality 3D 

models in general with some exceptions for challenging cases, such as loosely packed 

molecules or those with large cavities.  

3.1. Quality and accuracy of auto-encoding  

The voxelized objects derived from protein complex structures were encoded using 200 latent 

parameters in the auto-encoder neural network training procedure as described in the 

Methods section. From two databases for small angle scattering, the SASBDB and BIOISIS, 

542 SAXS datasets with deposited 3D models were obtained (see supplementary data). First, 

using the 3D models from these 542 datasets, the auto-encoder performance was evaluated. 

Each model was converted to a 3D voxel object with binary values and then fed to the trained 

auto-encoder for encoding and decoding. Then, each input model was used as the reference 

model to assess the quality of the decoded 3D object. The real space correlation between 

original models and decoded models from the corresponding 200 latent parameters were 

computed and analysed. The auto-encoder network is very efficient and accurate in 

representing the majority of the 3D protein shapes, yielding a mean correlation coefficient of 

0.88 with 56.1% greater than 0.90 (see Figure 1c). We also see a few failed cases, and their 

correlation coefficients are very low. After investigating those failed encoding cases, we 

found that those models have very complex shapes, such as flexible chains (for instance 

SASDBZ6, with cc=0.40) that are not even in a single conformation. For the majority of the 

testing models that have relative rigid and compact shapes, the auto-encoder works nicely in 

representing 3D shape information. This testing demonstrates that the 3D models are 

reproduced after going through the encoding-decoding procedure, and the compressed 200-d 

vectors are sufficient to represent 3D molecular shapes. This lays the foundation for applying 

the auto-encoder method to reconstruct 3D models by optimizing compressed parameters to 
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obtain models that fit to experimental SAXS data. Furthermore, the training dataset provides 

the distributions of latent variables, indicating that the valid values for these variables are 

distributed in limited ranges (see Figure 1d for examples). This prior information will 

facilitate the parameter sampling during the optimization process using genetic algorithms 

(see Methods section). 

3.2. Performance of reconstruction algorithm with or without model size information 

The evaluation of the reconstruction algorithm was performed on the same 542 experimental 

datasets that were used to evaluate the performance of the auto-encoder network in the 

previous section. Here, we use the SAXS data as the only target to reconstruct the 

corresponding 3D models, and the deposited 3D structures are used as references for 

reconstruction model quality assessment. 

The first reconstruction experiment was performed by assuming that the model size 

information is known. Model sizes can be derived from SAXS data using GNOM or other 

similar approaches (Svergun, 1992; Liu & Zwart, 2012). Instead of the maximum dimension 

obtained directly from the pairwise distance distribution functions, the auto-encoder method 

requires the radius of the model. Here, the radius of deposited models (coarse grained bead 

models or atomic models) from each SAXS dataset was used as an input value for model 

reconstruction.  

The reconstruction process was monitored based on the chi-score between model SAXS 

profile and the experimental data. As a retrospective check, the reconstructed models are also 

compared with the reference model by computing their Pearson correlation coefficients after 

optimal alignment. Figure 2a-c present an example to demonstrate the progress of model 

reconstruction. The dataset is from the SASBDB (ID: SASDAH6), and the atomic structure 

was also deposited to allow model comparison. The average chi-scores of SAXS data 

comparison and the average cc of the 3D model comparison are shown for each iteration. It is 

clear that the chi-score was rapidly reduced within the first 10 iterations and gradually 

converged to a small value, indicating that the model SAXS profiles match the target SAXS 

data. Meanwhile, the correlation coefficients increase as the model was reconstructed. The 

final model SAXS profile is shown in Figure 2b compared with the experimental data (up to 

q=0.2 Å). The reconstructed model was superimposed onto the atomic model and shown in 

Figure 2c in two orthogonal orientations. The agreement between the reconstructed model 

(blue surface) and the atomic structure (cartoon model) illustrates the success of 3D model 

reconstruction for this dataset. 
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Figure 2d shows the statistics of reconstructed model quality measured using Pearson 

correlation coefficients between the reconstructed models and the reference models in the 

databases. The histogram coloured in blue shows reconstruction performance using the model 

radius as known information. As shown in the following, the radius information is no longer 

required information to achieve similar accuracy levels. Among 542 testing datasets, 294 

reconstructed models have correlation coefficients greater than 0.70 (see supplementary 

Figures for representative models at various correlation levels). At this level, the 

reconstructed models are consistent with the references in the overall shapes. The models 

with a big cavity or flexible domains are challenging for the auto-encoder to compress the 

shape information to a 200-dimension vector. For those models with rigid and compact 

structures, the auto-encoder and the SAXS-based reconstruction are very successful. 

If the radius of the model to be reconstructed could not be faithfully obtained, the algorithm 

can optimize the size information under the same framework by simply treating the model 

radius as an additional element in the genes. Using the same dataset, the reconstruction 

algorithm was tested without providing accurate size information. The initial radius for each 

model in the first generation is a random positive number less than 300 (with the associated 

unit Å). The radius was taken as the 201st parameter and subject to the genetic algorithm for 

optimization. The optimized radii for 542 testing datasets are compared with the radii 

extracted from the reference models in Figure 2e, showing that the size information can be 

obtained by optimization. Despite radius differences in some datasets, the reconstructed 

model quality is comparable to the outcomes with radius information as shown in Figure 2d 

(red colour histogram). Two examples shown in Figure 2f demonstrate that high-quality 

models can be reconstructed even if the radius is not exactly the same as the reference values, 

indicating the robustness of the algorithm. 

4. Discussions and Conclusion 

Here, 3D model reconstruction from SAXS data is challenging given the limited information 

embedded in the 1D profile. Prior knowledge, especially size information, has been required 

for model reconstruction. Here, using the deep learning method, the 3D shape information 

can be compressively represented using 200-dimension vectors. More importantly, this new 

method does not require model size information and demonstrates its robustness in 3D model 

building. Currently, the 200-d vector and the SAXS profile are not directly related but 

indirectly related via a decoded 3D model and subsequent SAXS calculation. Preliminary 

results show that it is possible to encode a SAXS profile using low-dimensional vectors rather 

than computing from 3D models, and this feature will greatly reduce the computing time. 
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This is the first demonstration that the deep learning method can be applied in the 3D model 

reconstruction from SAXS data. As more high throughput SAXS data are being collected, we 

anticipate increasing applications of such methods in SAXS analysis. 
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Figure 1 Framework of auto-encoder and its capability in representing 3D models. (a) 
The voxelization of a molecular structure. Left: an atomic model represented in the cartoon 

representation. Right: the model is mapped on a 3D matrix whose values are binarized depending 
whether the grids are in the vicinity of any atom of the protein complex. (b) The auto-encoder 
architecture used in this study. The layers and structures are shown in the figure; details can be found 
in the Methods section. (c) The model quality encoded using the trained network and measured using 
the Pearson correlation coefficients between the models before and after going through the auto-
encoder. (d) The distribution of encoding parameter values for first four gene positions.  
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Figure 2 Performance of the decodeSAXS algorithm. (a) The progress of model reconstruction by 
optimizing the goodness of fit to experimental data (SASBDB ID: SASDAH6). Chi-scores for SAXS 
data and the Pearson correlation coefficients for reconstructed models are shown for each generation. 

(b) The SAXS comparison with experimental data for the reconstructed model in the final iteration. 
(c) The reconstructed model (blue surface) compared with the reference structure (obtained from 
SASBDB) at two orientations. (d) The algorithm performance measured using Pearson correlation 
coefficients between reconstructed models and the reference structures in the databases. Blue and red 
histograms show the statistics of correlation coefficients with or without using model size information 
as prior knowledge, respectively. (e) The comparison between optimized radii from a random value 
and the reference model radii. (f) Representative reconstructions for two examples from the SASBDB 

with or without radius information (more examples can be found in the supplementary materials). 
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