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SECTION 1: LITHIUM-ION BATTERY FUNDAMENTALS
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LITHIUM-ION BATTERY FUNDAMENTALS: LITHIUM-ION BATTERIES ARE EVERYWHERE
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Lithium battery end use breakdown based on data from Roskill Information Services LTD.

2009 estimates [1]

[2]

[3]

[4]



LITHIUM-ION BATTERY FUNDAMENTALS: BATTERIES AND SPACE EXPLORATION

5TFAWS 2016 SHORT COURSE ON LITHIUM ION BATTERIES

 Lithium ion (Li-ion) batteries provide energy dense and low

mass advanced energy storage solutions for a wide array of

applications which include medical, industrial, railway,

automobile, military and aerospace:

o Growing demand for advanced energy storage (AES) systems drives the Li-ion

battery market which is expected to reach $43 billion USD by 2020 [1, 5-7]

 Space exploration applications depend on on safe and

reliable AES and power management systems:

o Mission longevity depends on lightweight, safe, reliable and efficient AES

o Energy in space is limited to finite quantities of resources:

o Fuel is limited by storage tank size and launch mass limits

o Cost per pound to orbit ranges between $10k to $55k [8]

 Traditional alkaline based nickel cadmium (NiCd), nickel-

metal hydride (NiMH) and nickel hydrogen (NiH
2
) batteries

face replacement with Li-ion systems:

o Li-ion batteries offer more the double the performance for half the mass of their

alkaline counterparts; Li is the lightest metal with an atomic mass of 6.94 amu

o The International Space Station (ISS) begins replacing NiH2 batteries with Li-ion

batteries in November 2016

 The number of international partners and new private

companies in the space industry are growing:

o Space industry growth equates to increased usage and development of advanced

Li-ion batteries

Images retrieved online from company websites. Examples of national agencies and

various private industry competitors involved in space exploration. This list is not

comprehensive and does not indicate any opinion or preference of the presenter or his

affiliation [23-35].
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Images retrieved online from company websites. Examples of various industrial grade Li-

ion battery manufacturers. This list is not comprehensive and does not indicate any

opinion or preference of the presenter or their affiliation [9-22]
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Public domain images of space applications utilizing Li-ion technology: (a) James Webb Space Telescope, (b) Robonaut 2, (c) SpaceX Dragon, (d) Orion MPCV, (e) Extra-vehicular Mobility Unit, (f) ISS

and (g) Mars Rover Curiosity. Credit for all images is attributed to NASA, expect for image (e) where credit is given to the US Navy.

(a) (e)

(f) (g)(b) (c)

(d)



LITHIUM-ION BATTERY FUNDAMENTALS: RELATING THE ELECTROCHEMICAL REACTIONS, ENERGY AND POTENTIAL
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 The primary components of Li-ion batteries are the anode,

cathode, electrolyte and separator

o Li ions intercalate/de-intercalate between the anode and cathode (i.e. electrodes)

during discharge/charge respectively; intercalation refers to the insertion and

extraction of ions between the layers of cathode/anode materials

o Ions flow through an ionically-conductive and electrically insulative separator to

prevent shorting

o Electrons flow through an external circuit

 Li-ion batteries function with electrochemical reactions:

o Chemical reaction caused by or accompanied by an electrical current

o Reduction-oxidation reactions occur at electrodes

o Primary batteries: non-reversible reactions

o Secondary batteries: reversible reactions (rechargeable)

 Half cell reactions (individual electrode reactions) used to

calculate cell voltage via energy and potential relationships

described through:

o Gibbs Free Energy, ∆𝐺 = −𝑛𝐹𝐸

o Nernst Equation, 𝐸 = 𝐸0 −
𝑅𝑇

𝑛𝐹
𝑙𝑛𝑄𝑅

 Example of half cell reactions, overall reaction, energy

calculation and potential calculation provided to the right:

o Cathode (+): Lithium Cobalt Oxide (LiCoO2)

o Anode (-): Lithium graphite (LiC6)

o Electrolyte: Lithium hexafluorophosphate (LiPF6)

 Coulomb (C-Rate): charge/discharge rate based on total

capacity. Example for a 1 Amp-hour battery to the right:
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Potential = E+ - E- = 4 V

ΔG = -1 * 96500 C mol-1 * 4 V (i.e. 4 J C-1)

ΔG = -386 kJ = -107.2 Wh mol -1 @ 0.17 kg mol-1

Theoretical Specific Energy = 630.6 Wh kg-1

𝐂𝐨𝐎𝟐+ 𝐋𝐢+ + 𝐞− → 𝐋𝐢𝐂𝐨𝐎𝟐

𝐋𝐢𝐂𝟔 → 𝐋𝐢+ + 𝐂𝟔 + 𝐞−

Overall 𝐂𝐨𝐎𝟐+ 𝐋𝐢𝐂𝟔 → 𝐋𝐢𝐂𝐨𝐎𝟐+ 𝐂𝟔

E0 = 1 V

E0 = -3 V

n = 1

(-)

(+) Reduction

Oxidation

2 C = 2 A for 30 minutes (min)

1 C = 1 A for 1 hour (hr)

C/2 = 0.5 A for 2 hours (hrs)



LITHIUM-ION BATTERY FUNDAMENTALS: SCHEMATIC OF ION AND ELECTRON MOVEMENT
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LITHIUM-ION BATTERY FUNDAMENTALS: RAGONE PLOT
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Ragone plot of energy storage device specific energy density vs. specific power density. Data adapted from the United States Defense

Logistics Agency [36]

[37]

[38]

[39]

[40]

[41]

[42]



LITHIUM-ION BATTERY FUNDAMENTALS: DISADVANTAGES

10TFAWS 2016 SHORT COURSE ON LITHIUM ION BATTERIES

 Cycling behavior and memory effect refer to the loss in capacity through cycling

 Poor cold temperature performance

 Solid Electrolyte Interphase (SEI) formation

o A passive layer consisting of organic and inorganic electrolyte decomposition products

o Forms over anode surface during first charge cycle

o Ion conducting, electrically insulating

o Effects safety, cyclability, rate capability and induces irreversible charge loss

 Volumetric expansion

o Too much volumetric change during insertion and de-insertion of Li ions can damage electrodes and detrimentally affect battery life

and performance [43-44]

 Other disadvantages center around safety concerns:

o Thermal runaway, which can occur due to mechanical failure, electrochemical failure or thermal failure (detailed discussion later)

o Single cell thermal runaway energy can propagate to surrounding Li-ion cells causing a chain-reaction event
o Ejected materials and gases during runaway events are toxic, acidic and highly dangerous (e.g. toxic organic electrolytes)
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(a) (c)



SECTION 2: HEATING MECHANISMS PART 1: OHMIC 

HEATING AND ENTROPY 
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HEATING MECHANISMS PART 1: OHMIC HEATING AND ENTROPY
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 Li-ion batteries generate heat during charge and discharge operations due to [45]:

o Differences in open circuit and working voltages

o Changes in enthalpy terms and heat capacity

 Bernardi et. al. (1985) [45] developed an energy balance to represent the local heat generated in a Li-ion cell:

o Voltage and current

o Enthalpy of reaction (enthalpy voltage of reaction)

o Enthalpy of mixing

o Phase change

o Heat capacity change

 Bernardi’s energy balance is commonly simplified to only include Ohmic losses (primary thermal driver):
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𝑸𝑪𝒆𝒍𝒍 = 𝑰 𝑽𝑶𝑪 − 𝑽𝑾 − 𝑻
𝛛𝑽𝑶𝑪
𝛛𝑻

[45] 
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Image of a large format 185 Ah LiCoO2 electric vehicle battery. Image adapted from Walker et. al. (JPS 2015) based on images by Chen et. al. (JPS 2005) [46-47].
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HEATING MECHANISMS PART 1: OHMIC HEATING AND ENTROPY (DISCHARGE EXAMPLE)
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Open Circuit Voltage

1C Working V

2C Working V

3C Working V

3C Temperature

2C Temperature

1C Temperature

Voltage and temperature data from discharge of a large format 185 Ah LiCoO2 electric vehicle battery. Plots adapted from Walker et. al. (JPS 2015) based on data by Chen et. al. (JPS 2005) [46-47].
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𝐐 = 𝐈 𝐕𝐎𝐂 − 𝐕𝐖 − 𝐓
𝛛𝐕𝐎𝐂
𝛛𝐓

HEATING MECHANISMS PART 1: OHMIC HEATING AND ENTROPY (DISCHARGE EXAMPLE)
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HEATING MECHANISMS PART 1: OHMIC HEATING AND ENTROPY (CHARGE EXAMPLE)

64.8 cm

Image of a Boston Power Swing 5300 Li-ion cell [48-49].
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Voltage, current and temperature data from discharge of a 5300 mAh Boston Power Swing 5300 Li-ion battery. Data adapted from Walker et. al. (JPS 2015) [48-49].
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HEATING MECHANISMS PART 1: OHMIC HEATING AND ENTROPY (CHARGE EXAMPLE)
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profile (test was not equipped to directly 

output state-of-charge).



SECTION 3: HEATING MECHANISMS PART 2: THERMAL 

RUNAWAY 
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 Thermal runaway can occur when a Li-ion cell achieves

elevated temperatures due to:

o Thermal failure (e.g. over-temp)

o Mechanical failure (e.g. nail penetration)

o Electrochemical failure (e.g. internal shorting)

o Electrochemical abuse (e.g. overcharge)

 At elevated temperatures, exothermic decomposition

reactions begin:

o Self-heating begins when heat generation rates exceed the heat dissipation

capability

o The rate of the exothermic reactions increase with temperature in Arrhenius form

o Eventually, stability is lost and cell rupture and fire occurs; all remaining

electrochemical energy is released

o The models describing the decomposition reactions heating rates are provided to

the right:

 Propagation is a chain reaction event which occurs when

neighbor cells go into thermal runaway due to the energy

released from the original runaway due event
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Li-ion battery

Q
Q

Q

Q

Q

Q
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HEATING MECHANISMS PART 2: THERMAL RUNAWAY

𝑑𝑥𝑆𝐸𝐼

𝑑𝑡
= −𝐴𝑆𝐸𝐼𝑥𝑆𝐸𝐼exp(

−𝐸𝑆𝐸𝐼

𝑘𝑏𝑇
) (1)

𝑑𝑥𝑎

𝑑𝑡
= −𝐴𝑎𝑥𝑎exp(

−𝑧

𝑧0
)exp(

−𝐸𝑎

𝑘𝑏𝑇
) (2)

𝑑𝑧

𝑑𝑡
= 𝐴𝑎𝑥𝑎exp(

−𝑧

𝑧0
)exp(

−𝐸𝑎

𝑘𝑏𝑇
) (3)

𝑑𝑄𝑆𝐸𝐼

𝑑𝑡
= −𝑚𝑆𝐸𝐼 ℎ𝑆𝐸𝐼

𝑑𝑥𝑆𝐸𝐼

𝑑𝑡
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Richard and Dahn (1999)

Hatchard et. al. (2001)

Kim et. al. (2007)

Coman et. al. (2015)
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Return Slide 34 
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HEATING MECHANISMS PART 2: THERMAL RUNAWAY ACCIDENTS

(a) (b) (c)

(d) (e) (f)

Online images of thermal runaway events for: (a) Hoverboard, (b) UPS Airlines Flight 6, (c) Tesla, (d) Boeing 787 Dreamliner image 1, (e) Boeing 787 Dreamliner image 2 and (f) Boeing 787 Dreamliner

image 3.

[55] [56][54]

[57] [57] [57]
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 Following the Boeing 787 Dreamliner incident, the NASA

Engineering and Safety Center (NESC) was tasked to

address safety concerns associated with Li-ion batteries

and thermal runaway [58]:

o Li-ion Rechargeable Extravehicular Activity battery assembly (LREBA)

o Li-ion Pistol Grip Tool battery assembly (LPGT)

o Long Life Battery (LLB) for EMU

 NASA NESC definition of design success:

o Assume thermal runaway will eventually happen

o Design should ensure that TR event is not catastrophic

o Demonstrate that propagation to surrounding cells will not occur

 Thermal management systems designed to mitigate the

effects of thermal runaway and prevent cell-to-cell

propagation should consider the following [58]:

o No runaway event is the same; even for the same manufacturer and state-of-

charge; there is a range of possible outcomes

o Onset temperature, acceleration temperature, trigger temperature, trigger cell

peak temperature and neighbor cell peak temperature

o Total energy released through sides and top of the cell body

o Cell failure type (e.g. side wall vs. top)

o System pressure increase, gases released and ejecta material

[57]
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HEATING MECHANISMS PART 2: NASA’S RESPONSE TO THERMAL RUNAWAY

(a) (b)

(c)

(d)

Public access images representing the EMU Li-ion batteries evaluated by the NESC: (a) LLB, (b)

LPGT, (c) EMU LREBA image 1, (d) EMU LREBA image 2 [58].
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HEATING MECHANISMS PART 2: THERMAL RUNAWAY EXAMPLE

Credit: E. Darcy & 
NASA JSC ESTA
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HEATING MECHANISMS PART 2: THERMAL RUNAWAY EXAMPLE

Image extracted from Sandeep et. al.. “Energy Distributions Exhibited during Thermal Runaway of Commercial Lithium Ion Batteries used for Human Spaceflight

Applications.” Submitted to JPS April 2016 [59].
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HEATING MECHANISMS PART 2: UNDERSTANDING THERMAL RUNAWAY



BREAK TIME!
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SECTION 4: SIMULATION TECHNIQUES PART 1: THERMAL 

MODEL CONSTRUCTION METHODS
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 Li-ion battery performance, efficiency and safety are heavily

influenced by cell temperature and surrounding temperature

 Understanding thermal performance via detailed thermal

models can significantly help with the design process

 Accurate prediction of Li-ion battery thermal performance

requires advanced test-correlated thermo-electrochemical

models

o Generally, the optimal way to perform thermo-electrochemical analysis is with a

multi-physics methodology, however;

o Predicting thermal performance in thermal radiation space environments requires

specialized software (e.g. CR Tech Thermal Desktop, TSS, NX SST, TRASYS)

 This section discusses methods to quickly develop thermal

models of battery assemblies via SpaceClaim, TD Direct and

Thermal Desktop

 Support material: performed two studies examining thermo-

electrochemical analysis in a Thermal Desktop environment

(Proof-of-Concept and Validation-of-Concept):

o “Thermo-electrochemical analysis of lithium ion batteries for space applications

using Thermal Desktop.” Walker, W.; Ardebili, H.; JPS 2014.

o “Thermo-electrochemical evaluation of lithium ion batteries for space

applications.” Walker, W.; Yayathi, S.; Shaw, J.; Ardebili, H.; JPS 2015

Orbital plane

Sun vector on orbit plane

Sun vector

β
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SIMULATION TECHNIQUES PART 1: THERMAL MODEL CONSTRUCTION METHODS
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SIMULATION TECHNIQUES PART 1: THERMAL MODEL CONSTRUCTION METHODS

Figure adapted from “Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop.” Walker, W.; Ardebili, H.; JPS 2014
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SIMULATION TECHNIQUES PART 1: THERMAL MODEL CONSTRUCTION METHODS

G E O M E T R Y  D E F I N I T I O N

Figure adapted from “Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop.” Walker, W.; Ardebili, H.; JPS 2014
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SIMULATION TECHNIQUES PART 1: THERMAL MODEL CONSTRUCTION METHODS (GEOMETRY DEFINITION)

CAN

 Example considers a bank of x14 18650 cells (similar size as AAA cell)

 Defeature CAD file of bank geometries via SpaceClaim and use TD

Direct to provide thermal definition:

o Thermophysical and optical properties

o Create a separate domain tagset for surfaces contacting the cells (contactor will be created later)

o Separate domain tag sets should be created for any surface contacting another surface

o Surfaces involved in radiation analysis should also be in separate

 Create an independent Thermal Desktop model of the 18650 cell

o Note the distinct representation of the jellyroll AND the cell can

 Create a master file that has a TD Direct link to the bank geometries

and use the XREF feature to place the reference cell model (x14 times)

o Battery assemblies are developed rather quickly; these tools can help you keep up with changes

XREF

TD 

DIRECT

JELLYROLL

+ -
Length: 65 mm

Diameter: 18 mm G: 500 W m-2 °C-1
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SIMULATION TECHNIQUES PART 2: THERMAL MODEL CONSTRUCTION METHODS (GEOMETRY DEFINITION)

0.85 cp

0.90 cp
0.95 cp

1.05 cp

1.10 cp
1.15 cp

 Special notes on jellyroll specific heat

capacity (Cp):

o The reference model of the cell should have a distinct jellyroll

and a distinct cell can

o The cell can is typically made of a known material (e.g. mild

steel, stainless steel or aluminum)

o The jellyroll is essentially a composite of the carbon anode,

the lithium rich cathode, the electrolyte, the polymer

separator and the metal current collectors; your Cp must

accurately characterize the performance of these materials

o Unfortunately the vast amount of literature out there

discussing the Cp of Li-ion cells is based on testing which

included the cell can; hence the documents discuss the

overall Cp of the cell rather than just the jellyroll

o If the jellyroll Cp is unknown, start with 1000 J kg-1 C-1

 The image to the right demonstrates the

impact that small error in Cp

 See the reference below which provides more

discussion on the topic

o “Thermo-electrochemical analysis of lithium ion batteries for

space applications using Thermal Desktop.” Walker, W.;

Ardebili, H.; JPS 2014.

Figure adapted from “Thermo-electrochemical analysis of lithium ion batteries for space
applications using Thermal Desktop.” Walker, W.; Ardebili, H.; JPS 2014
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SIMULATION TECHNIQUES PART 1: THERMAL MODEL CONSTRUCTION METHODS

V O L U M E T R I C  H E A T I N G  D E F I N I T I O N

Figure adapted from “Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop.” Walker, W.; Ardebili, H.; JPS 2014
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SIMULATION TECHNIQUES PART 1: THERMAL MODEL CONSTRUCTION METHODS (VOLUMETRIC HEATING DEFINITION)

 Ohmic heat generation may be applied to as a single heat load in the master file of the battery assembly

o In the cell reference file, create a domain tag set that contains the jellyroll

o In the master file, create registers for each of the variables in Bernardi’s equation; we will simplify here and only use current and voltage

o In the master file, apply “heat load to solid” and select the jellyroll domain tag set; set the value as a symbol expression of Bernardi’s equation

o In the master file, create VAR0 array interpolation or bivariate array interpolation time dependent logic objects; the array value should be defined by test

 Running a transient simulation will now update the previously defined heat load on the jellyroll before each

timestep based on the change in current, open circuit voltage and working voltage
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SIMULATION TECHNIQUES PART 1: THERMAL MODEL CONSTRUCTION METHODS (VOLUMETRIC HEATING DEFINITION)

 Disclaimer: these simulations are still in development and

are not test correlated, but do demonstrate the capability

we will gain once completed

 Thermal runaway logic here considers:

o Jellyroll trigger temperature (TTRIG)

o Length of the runaway event (TEVENT)

o Energy released per second (QEVENT)

o Ensures runaway only happens once (RUNAWAY)

o Deactivates exterior heater (END_TRIGGER)

 It is challenging, but possible, to establish logic that

triggers runaway on a per cell basis as a function of

temperature that will only occur once in the life of the cell

 This logic does NOT include:

o Boiling and venting of the electrolyte, which affect the general heat rate profile

o Designation of fraction of energy through the sides of the cell, the top and in the

ejecta/gas; assumes all heat is generated in the jellyroll

 Ultimate goal when developing this basic code was to use

Thermal Desktop for battery design certification

o Pre-determine the thermal environment a permanently mounted Li-ion battery

must operate in and design to that environment

o Determine attitudes and environments which would induce thermal runaway and

propagation

o A good question from TFAWS; “what does the propagation scenario look

like if you have an environmentally induced failure – aren’t all of your

cells close to the trigger temperature rather than just a single cell?”

FSTART
C find submodel reference ID

call modtrn('jell',mtest)
C loop through all diffusion nodes in the submodel
C assumes nodes are sequentially numbered

do itest = 1, nmdif(mtest)
C look up node storage location

call nodtrn('jell',itest,ntest)
C perform runaway logic

if ((T(ntest) .ge. TTRIG) .and. (runaway .ge. 0)) then
if (runaway .eq. 0.) then

end_trigger = TIMEN + TEVENT
runaway = 1

end if
if (TIMEN .le. end_trigger) then

C use capacitance fraction to proportion the heat load
C battery_mCp can be calculated in advance

Q(ntest) = Q(ntest) + QEVENT*C(ntest)/JELLMCP
else

Q(ntest) = Q(ntest) + 0.
runaway = -1

end if
end if

end do
FSTOP
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SIMULATION TECHNIQUES PART 1: THERMAL MODEL CONSTRUCTION METHODS ( VOLUMETRIC HEATING DEFINITION)

C OPERATIONS

CALL DIFFEQ1I( 1, Xcati, DXcDT)

CALL DIFFEQ1I( 2, Xseii, DXsDT)

CALL DIFFEQ1I( 3, Xani, DXaDT)

CALL DIFFEQ1I( 4, Z0, DZDT)

CALL DIFFEQ1I( 5, SoCi, DSoCDT)

C SYMBOL MANAGER

Qsei = man*Hsei*dXsdt

Qec = -(mcat+man)*Hec*dSoCdt

Qcat = mcat*Hcat*dXcdt

Qan = man*Han*dXandt

C VAR2

CALL DIFFEQ1( 1, Xcat, 1.0, Fcat*(1-Xcat)*EXP(-
Ecat/(Kb*JELL.T1)),0.0)

DXcDT = Fcat*Xcat*(1-Xcat)*EXP(-Ecat/(Kb*JELL.T1))

CALL DIFFEQ1( 2, Xsei, 1.0, -Fsei*EXP(-Esei/(Kb*JELL.T1)),0.0)

DXsDT = -Fsei*Xsei*EXP(-Esei/(Kb*JELL.T1))

CALL DIFFEQ1( 3, Xan, 1.0, -Fan*EXP(-Ean/(Kb*JELL.T1))*EXP(-
Z/Z0),0.0)

DXaDT = -Fan*Xan*EXP(-Ean/(Kb*JELL.T1))*EXP(-Z/Z0)

CALL DIFFEQ1( 4, Z, 1.0, 0.0, Xan*Fan*EXP(-Ean/(Kb*JELL.T1))*EXP(-
Z/Z0))

DZDT = Xan*Fan*EXP(-Ean/(Kb*JELL.T1))*EXP(-Z/Z0)

CALL DIFFEQ1( 5, SoC, 1.0, 0.0, -Fec*(1-Xcat)*Xan*exp(-
Eec/(Kb*JELL.T1))+(DXaDT-DXcDT)*SoC)

DSoCDT = -Fec*(1-Xcat)*Xan*exp(-Eec/(Kb*JELL.T1))+ (DXaDT-DXcDT)*SoC

C VAR0
Credit: Lewis Jones (ES3 Intern)

 Can we use the SINDA DIFFEQ statement to solve the models discussed on slide 18 instead?

o Answer: It is possible, but there are some limitations due to timestep control because some of the terms approach zero
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SIMULATION TECHNIQUES PART 1: THERMAL MODEL CONSTRUCTION METHODS

Figure adapted from “Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop.” Walker, W.; Ardebili, H.; JPS 2014
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SIMULATION TECHNIQUES PART 2: THERMAL MODEL CONSTRUCTION METHODS (MASTER FILE ASSEMBLY)

 The geometries and heat loads are defined in the

master file by following the steps listed in the

previous slides

 Create contactors between the bank geometries

and the cell geometries via Domain Tagsets:

o DTS_CELL_TO_FOAM TO DTS_FOAM_TO_CELL

o DTS_CELL_TO_POS_ENDCAP TO

DTS_POS_ENDCAP_TO_CELL

o DTS_CELL_TO_NEG_ENDCAP TO

DTS_NEG_ENDCAP_TO_CELL

 Make sure that all material properties used via TD

Direct or used in the single 18650 cell reference

file are recreated in the Master File

thermophysical property and optical property

databases

 Note the anisotropy of the thermal conductivity for

the jellyroll due to the layers:

o Cylindrical Cell: 28 (height) / 28 (angular) / 3 (radial) W m-1 °C-1

o Prismatic Cell: 28 (x, y) / 3 (z – i.e. thickness) W m-1 °C-1

 Define the convection and radiation environment:

o Note that any TD Direct or XREF surface involved with the

environment requires the definition of Domain Tagsets for the

interactive surfaces
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SIMULATION TECHNIQUES PART 1: THERMAL MODEL CONSTRUCTION METHODS (MASTER FILE ASSEMBLY)

 Special notes on creating contact in the

master file between the reference cell file and

the TD Direct bank geometry import:

o Use TD Direct to create domain tag sets of areas in contact

for the bank geometries

o Manually create domain tag sets of areas in contact in the

cell reference file

o Create a contactor in the master file which references both

domain tag sets

 Examples of useful areas to have domain

tagsets:

o Top/bottom of cell in the cell reference model

o Busbar tabs that will connect to the top/bottom of the cells

o Outside surfaces of the cell that will be in contact with the

endcaps and interstitial materials

o Inside surfaces of endcaps and interstitial materials that will

be in contact with the cell

o Locations of contact for the bank geometries

 Domain tag sets can also be used to identify

areas for special cases; e.g. application of a

patch heater to induce thermal runaway



SECTION 5: SIMULATION TECHNIQUES PART 2: EXAMPLE 

ANALYSIS RESULTS
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Comparison of TD-S results, Chen’s results and experimental results for 1.0C-3.0C discharge rates in a natural convection environment [47-48]

SIMULATION TECHNIQUES PART 2: LARGE BATTERY ASSEMBLY ANALYSIS RESULTS (DISCHARGE)

J O H N S O N  S P A C E  C E N T E R
ENGINEERING DIRECTORATE | STRUCTURAL ENGINEERING DIVISION | THERMAL DESIGN BRANCH

281. 483. 0434 | william.walker@nasa.gov

TEST

PREDICTION

3C Temperature

2C Temperature

1C Temperature



300

310

320

330

340

350

360

370

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
e
m

p
e
r
a

t
u
r
e

 
(
K

)

Depth of Discharge (DoD)

40TFAWS 2016 SHORT COURSE ON LITHIUM ION BATTERIES

SIMULATION TECHNIQUES PART 2: LARGE BATTERY ASSEMBLY ANALYSIS RESULTS (DISCHARGE)
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Comparison of TD-S results, Chen’s results and experimental results for 3.0C discharge rate in varied forced convection environments (20-300 W m-2 °C-1) [47-48]
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SIMULATION TECHNIQUES PART 2: SINGLE CELL ANALYSIS RESULTS (CHARGE)
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Image adapted from “Thermo-electrochemical evaluation of lithium ion batteries for space applications.” Walker, W.; Yayathi, S.; Shaw, J.; Ardebili, H.; (JPS 2015)
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SIMULATION TECHNIQUES PART 2: SINGLE CELL ANALYSIS RESULTS (CHARGE)

R2 300 cell system level model simulated (a) exterior to an example satellite in a (b) -75 beta orbit, (c) 0 beta orbit and (d) +75 beta orbit [TBD]
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SIMULATION TECHNIQUES PART 2: THERMAL RUNAWAY ANALYSIS RESULTS (USER DEFINED HEATING)

FSTART
C find submodel reference ID

call modtrn('jell',mtest)
C loop through all diffusion nodes in the submodel
C assumes nodes are sequentially numbered

do itest = 1, nmdif(mtest)
C look up node storage location

call nodtrn('jell',itest,ntest)
C perform runaway logic

if ((T(ntest) .ge. TTRIG) .and. (runaway .ge. 0)) then
if (runaway .eq. 0.) then

end_trigger = TIMEN + TEVENT
runaway = 1

end if
if (TIMEN .le. end_trigger) then

C use capacitance fraction to proportion the heat load
C battery_mCp can be calculated in advance

Q(ntest) = Q(ntest) + QEVENT*C(ntest)/JELLMCP
else

Q(ntest) = Q(ntest) + 0.
runaway = -1

end if
end if

end do
FSTOP
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SIMULATION TECHNIQUES PART 2: THERMAL RUNAWAY ANALYSIS RESULTS (PHYSICS DEFINED HEATING)

0 - D  S I M U L A T I O N

ENVIRONMENT HEATS THE NODE BY 

NATURAL CONVECTION AND 

RADIATION AT 2 °C MIN
-1

(SIMILAR TO 

ARC TESTING CONDITIONS)

Simulations based on mathematic models developed by Richard and Dahn, Hatchard et. al., Kim et. al. and Coman et. al. [67-70].

C OPERATIONS

CALL DIFFEQ1I( 1, Xcati, DXcDT)

CALL DIFFEQ1I( 2, Xseii, DXsDT)

CALL DIFFEQ1I( 3, Xani, DXaDT)

CALL DIFFEQ1I( 4, Z0, DZDT)

CALL DIFFEQ1I( 5, SoCi, DSoCDT)

C SYMBOL MANAGER
Qsei = man*Hsei*dXsdt
Qec = -(mcat+man)*Hec*dSoCdt
Qcat = mcat*Hcat*dXcdt
Qan = man*Han*dXandt

C VAR2

CALL DIFFEQ1( 1, Xcat, 1.0, Fcat*(1-Xcat)*EXP(-Ecat/(Kb*JELL.T1)),0.0)
DXcDT = Fcat*Xcat*(1-Xcat)*EXP(-Ecat/(Kb*JELL.T1))
CALL DIFFEQ1( 2, Xsei, 1.0, -Fsei*EXP(-Esei/(Kb*JELL.T1)),0.0)
DXsDT = -Fsei*Xsei*EXP(-Esei/(Kb*JELL.T1))
CALL DIFFEQ1( 3, Xan, 1.0, -Fan*EXP(-Ean/(Kb*JELL.T1))*EXP(-Z/Z0),0.0)
DXaDT = -Fan*Xan*EXP(-Ean/(Kb*JELL.T1))*EXP(-Z/Z0)
CALL DIFFEQ1( 4, Z, 1.0, 0.0, Xan*Fan*EXP(-Ean/(Kb*JELL.T1))*EXP(-Z/Z0))
DZDT = Xan*Fan*EXP(-Ean/(Kb*JELL.T1))*EXP(-Z/Z0)
CALL DIFFEQ1( 5, SoC, 1.0, 0.0, -Fec*(1-Xcat)*Xan*exp(-
Eec/(Kb*JELL.T1))+(DXaDT-DXcDT)*SoC)
DSoCDT = -Fec*(1-Xcat)*Xan*exp(-Eec/(Kb*JELL.T1))+ (DXaDT-DXcDT)*SoC
C VAR0
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Simulations based on mathematic models developed by Richard and Dahn, Hatchard et. al., Kim et. al. and Coman et. al. [67-70].
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